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Stress distribution in static two-dimensional granular model media in the absence of friction

S. Luding*
Institute for Computer Applications 1, Pfaffenwaldring 27, 70569 Stuttgart, Germany

~Received 26 November 1996!

We present simulations of static model sandpiles in two dimensions~2D!, and focus on the stress distribu-
tion in such arrays made of discrete particles. We use the simplest possible model, i.e., spherical particles with
a linear spring and a linear dashpot active on contact and without any frictional forces. Our model is able to
reproduce several recent theoretical predictions. For different boundary conditions we examine the contact
network and the stresses in the array and at the bottom of the pile. In some cases we observe a dip, i.e., the
relative minimum in pressure, under the center of the pile. We connect the dip to arching, and we relate arching
to the structure of the contact network. Finally, we find that small polydispersity is sufficient to cause a so
called stress network, i.e., strong fluctuations in stress. From these data we determine the probability distribu-
tion for the vertical stress at the bottom, and relate it to theoretical and other numerical work.
@S1063-651X~97!03204-4#

PACS number~s!: 46.10.1z, 05.40.1j, 83.70.Fn, 01.55.1b
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I. INTRODUCTION

In recent years the physics of granular materials has
ceived growing interest@1#. One of the many interesting fea
tures of granulates is the stress distribution in static or q
sistatic arrays. In contrast to a liquid, the pressure in a s
filled with, e.g., grains, does not increase linearly with dep
but saturates at a certain value@2#. This is due to internal
friction and to arching, so that the walls of the silo carry
part of the materials’ weight. In sandpiles no walls a
present, so that the situation may be different, i.e., the t
weight of the pile has to be carried by the bottom. Howev
the distribution of forces under and also inside the pile is
yet completely understood. Experiments on rather large p
show that the normal force has a relative minimum under
top of the pile, the so-called dip@3,4#. On a much smaller
scale, the stress chains are observed, i.e., stresses are m
transported along selected paths, and the probability distr
tion of stress spans orders of magnitude@5–7#.

One simple model pile is an array of rigid spheres,
ranged on a diamond lattice, i.e., with four nearest neighb
each@8,9#. The force under such a pile is constant in contr
to the experimental observations, and periodic vacancie
such a configuration do not lead to a dip in the pressure a
bottom @10#. The variation of the size of some of the pa
ticles or an attractive force between the particles may lea
a nonconstant force under the pile@11#. Continuum ap-
proaches@12–16# may lead to a dip in the vertical stress
the correct assumptions for the constitutive equations
chosen. Edwards@12# introduced the notion that a pressu
minimum can result from compressive stresses aligning
fixed directions. Wittmer and co-workers@15,16# embel-
lished this idea recently with concrete calculations in agr
ment with the experimental data@4#. A lattice model based
on a random opening of contacts@17# also shows the dip in
average over many realizations.

*Electronic address: lui@ica1.uni-stuttgart.de
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In this study we focus on two-dimensional~2D! situa-
tions, with particles on an almost regular lattice, which w
analyze using molecular dynamics~MD! simulations. The
aim is to find the dip under conditions as simple as possi
and to understand the stress networks and arches. We
scribe the simulation method used in Sec. II, and discuss
physics of particle contacts in Sec. III. The results are p
sented in Sec. IV, and discussed in Sec. V.

II. SIMULATION ASPECTS

The elementary units of granular materials are solid ‘‘m
soscopic’’ grains, interacting on contact. The surface is
general rough on a microscopic scale and solid friction
usually found. Here we focus on properties of granular s
tems in the absence of friction. We will examine in how f
phenomena like stress chains and arching depend on fric
by neglecting solid friction. However, we have some kind
‘‘geometrical friction,’’ since the particles restrict the motio
of their neighbors due to excluded volume effects. Witho
friction, energy may still be dissipated by, e.g., viscous d
formations, modeled here by a simple viscous dashpot,
tive during the contact.

Since we are interested in static arrangements of parti
in the gravitational field, we use strong viscous damping
order to reach the steady state quickly. For the relaxation
the array we use a molecular dynamics procedure@18,19#, in
order to allow contacts to break. The MD method is not t
best choice for a fast relaxation, but closing and opening
contacts is implemented straightforwardly.

A. Initial and boundary conditions

In the simulationsN spherical particles, with diameter
di ( i 5 1, . . . ,N) are used. If not explicitly mentioned we us
monodisperse spheres of diameterdi5d051.5 mm. TheN
particles are placed into a container with different bound
conditions at the bottom and also different system siz
Starting from a regular close-packed triangular arrangem
4720 © 1997 The American Physical Society
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55 4721STRESS DISTRIBUTION IN STATIC TWO- . . .
with L particles in the lowermost layerM50 at the bottom,
we model heaps of slope 60° or 30° by addingLM5L2M or
LM5L23M particles for layerM , respectively. The numbe
of particles is thus N(60)5H (60)(L11)/2 or
N(30)5H (30)

„L23(H (30)21)/2… with the number of layers
H (60)5L or H (30)5 int@(L21)/3#11. The largest pile we
simulate hasL5100, and thusN(30)51717.

The initial velocities and overlaps of the particles are
to zero if not explicitly given, gravity is slowly tuned from
zero to the selected magnitude and the system is simul
until the kinetic energy is several orders of magnut
smaller than the potential energy, and the stresses no lo
vary. The particles at the bottom layerM50 are either fixed,
or may slide horizontally and penetrate the bottom vertica
In the sliding case, only the outermost particles are fixed
horizontal direction by the sidewalls. For a schematic dra
ing of the four possible situations, see Fig. 1~a!. The possible
configurations of a regular contact network are schematic
drawn in Fig. 1~b!.

B. Molecular dynamics method

For the integration of the equations of motion we use
fifth order predictor-corrector MD scheme, see Refs.@18,19#.
Since we are interested in a static situation in 2D, with
most monodisperse particles, no particle has more than
nearest neighbors. For the simulation we keep the neigh
in memory in order to reduce the computational effort.

There are two forces acting on particlei when it overlaps
with particle j , i.e., when the distance
r i j5urW j2rW i u<(di1dj )/2. We use an elastic force

fWel
~ i !5k„r i j2

1
2 ~di1dj !…nW i j , ~1!

with the spring constantk, acting on particlei in normal
direction nW i j5(rW j2rW i)/r i j . The second force in normal di
rection is dissipative,

FIG. 1. ~a! Schematic drawing of a pile in a box with smoot
flat bottom~left!, and on a bumpy bottom~right!, with L057. The
solid bar at the right indicates that the particles in rowM50 are
fixed, so that the first relevant row with mobile particles isM51,
with L155. ~b! Schematic drawing of the typical contact netwo
configurations in a regular arrangement.
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fWdiss
~ i ! 5m~vW i j •nW i j !nW i j , ~2!

accounting for the inelasticity of the contacts. In Eq.~2! the
constantm is a phenomenological dissipation coefficient, a

vW i j5vW j2vW i is the relative velocity of the particlesi and j . As
mentioned above, we neglect tangential forces. The con
of a particle with a wall or an immobile particle is mimicke
by setting the mass of the immobile contact partner to in
ity. Finally, the influence of gravityg is readily included into
the equations of motion.

III. CONTACTS

Now we are interested in the static limit, where particl
ideally have zero relative velocities, and are either in cont
or separated by a gap and in the latter case do not inte
However, in this section, we will discuss the dynamics
contacts in order to estimate the typical scales of the syst

A. Two particle contacts

Since we use no tangential forces, we will discuss
normal direction of a contact only. Considering the collisi
of two particles, the situation is modeled by a spring an
dashpot@see Eqs.~1! and ~2!#, so that the relative accelera
tion during contact isy95(d2/dt2)r i j5 f ( j )/mj2 f ( i )/mi ,
with f ( i )5 f el

( i )1 f diss
( i ) . Due to force balance we se

f ( j )52 f ( i ), which leads to a differential equation for neg
tive penetration depthy5r i j2(1/2)(di1dj ):

y912gy81v0
2y50. ~3!

In Eq. ~3!, v05Ak/mi j , g5m/(2mi j ), and the reduced mas
mi j5mimj /(mi1mj ). The solution of Eq.~3! for y<0 is

y~ t !5~v0 /v!exp~2gt !sin~vt !, ~4!

with the corresponding velocity

y8~ t !5~v0 /v!exp~2gt !@2gsin~vt !1vcos~vt !#. ~5!

In Eqs.~4! and~5!, v05y8(0) is the relative velocity before
collision andv5Av0

22g2 the damped frequency. As lon
as g2,v0

2, the typical duration of the contact of two pa
ticles is

tc5p/v, ~6!

because the interaction ends wheny(t).0. The coefficient
of restitutione is defined as the ratio of velocities after an
before contacte52y8(tc)/y8(0), so that Eqs.~5! and ~6!
lead to

e5exp~2pg/v!. ~7!

From Eqs.~4! and ~5! the maximal penetration depthymax
follows the condition y8(tmax)50, so that
vtmax5arctan(v/g)5arcsin(v/v0) and
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4722 55S. LUDING
ymax5~v0 /v!exp~2gtmax!sin~vtmax!

5~v0 /v0!exp@~2g/v!arcsin~v/v0!#. ~8!

The maximum penetration depthymax(v0) is, in the case of,
say, steel particles, much smaller than the particle diame
Thus we check in our simulations thatymax is always orders
of magnitude smaller thand0.

The elasticityk in Eq. ~1! is, e.g., a function of the Young
modulus and the Poisson ratio, which are material depen
and thus fixtc for a given material in our simplified mode
Using the theory of Hertz, a more complicated depende
of k on the impact velocity, the elasticity, and the penetrat
depth is found, e.g.,k}y1/2. In Ref. @20#, the contact time of
two steel spheres with diameterd51.5 mm and with an im-
pact velocity ofv051 m/s was evaluated totc'4.631026 s.
We checked for some situations that the more realistic H
model does not change the results@21#, and thus used the
simpler linear model. For a detailed discussion of differe
MD models and force laws, see Ref.@22#.

For weak dissipationtc is proportional tok
21/2, so that an

increase ofk by a factor of 100 decreasestc by a factor of
10. Now taking physical values fortc leads to extremely long
MD computing times for a given simulation time. One has
ensure that the time scales of the system, i.e.,tc , and of the
algorithm, i.e., the integration time steptMD , are well sepa-
rated. Ideally one should havetMD,,tc . The MD simula-
tions reported here were done withtMD,tc /40. Using con-
tact times in the range 1023 s,tc,1025 s, by choosingk
according to Eq.~6!, we have simulation time steps in th
range 2.531023 s ,tMD,2.531027 s.

In our simulations we have as a typical set of parame
d051.5 mm,k/mi j56.673106 s22, g51.673103s21, and
tMD51025 s. These parameters, with the above equatio
lead totc50.9731023 s ande50.2, i.e., rather strong dis
sipation.

B. Multiparticle contacts

In Refs.@20,23,24# the above defined interaction law ha
been tested in the case of many particles in contact at
same time. For the viscous interaction law, i.e., the lin
spring-dashpot model, energy dissipation is very inefficie
i.e., the so-called ‘‘detachment effect’’ occurs. The time
wave needs to propagate through a system of sizel5Ld0
was found to be comparable toLtc . Thus we will measure
time in units ofLtc , and velocities in units ofd0 /tc , i.e., the
particle size divided by the contact time, rather correspo
ing to the speed of sound inside the elastic material. Thus
have the lengthl as the product of typical time and typica
velocity.

Dividing Eq. ~1! by kl, we find that the dimensionles
deformationx/ l in a static situation, i.e.,y850, is propor-
tional to the dimensionless elastic forcef el /(kl). In the
gravitational field the elastic forcef el scales withmg, where
m is the mass of the pile, so thatmg}kl. We tested for
several situations that our results do depend rather on
ratio g/k, than on the specific values chosen forg or k.
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C. Stress tensor and scaling

An important quantity that allows insight into the state
the system is the stress tensors @25,26#, which we identify
in the static case with

sab
~ i ! 5~1/V~ i !!Sqa f b , ~9!

where the indicesa andb indicate the coordinates, i.e.,x
andz in 2D, see Fig. 1. This stress tensor is an average o
all contacts of the particles within volumeV( i ), with q de-
noting the distance between the center of the particle and
contact point, andf denoting the force acting at the conta
point. Throughout this study we average over the contact
one particle (i ) to obtain the stresses for one realization.

From a static configuration of ‘‘soft’’ particles we ma
now calculate the components of the stress ten
sxx ,szz,sxz , andszx , and also defines15(sxx1szz)/2,
s25(sxx2szz)/2, ands*5sxz . Since we neglected tan
gential forces, the particles are torque free and we obse
only symmetric stress tensors, i.e.,szx5sxz . The eigenval-
ues ofs are thussmax,min5s16A(s2)21(s* )2, and the
major eigenvalue is tilted by an angle

f5arctanS smax2sxx

sxz
D5

p

2
1
1

2
arctanS 2sxz

sxx2szz
D

~10!

from the horizontal in counterclockwise direction.
In order to find the correct scaling for the stress as

simplification example we assume, like Liffman, Chan, a
Hughes@8,11#, a rigid triangle with densityr, width l , height
h, and massm5rhl/2. Since the material is rigid, we find
constant force at the supporting surface, so that the pres
is also constantp5mg/ l5rgh/2. Thus we will scale the
stress by the pressurep and further on use the dimensionle
stress

S5
2s

rgh
5

s l

mg
5

s2a

hmg
, ~11!

with the volumea5hl/2 of the triangular pile. The vertica
component will be abbreviated withV5Szz, the horizontal
component with H5Sxx , and the shear componen
Q5Sxz . In addition to the components ofS, we will also
plot the stress tensor in its principal axis representation,
for each particle we plot the scaled major principal a
alongf and the minor axis in the perpendicular direction

IV. RESULTS

A. Piles with bumpy bottom

1. Comparison of piles with different slope

The first situation we address is a homogeneous pile
assumed in Refs.@9,11#. Here we useL1520 particles in row
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55 4723STRESS DISTRIBUTION IN STATIC TWO- . . .
M51, and create a 60° pile. TheL0521 particles in the
lowermost rowM50 are fixed with separationd0. The par-
ticles have no horizontal contacts, so that the contact
work is a diamond structure. As predicted in Refs.@9,11#, the
normal force at the bottom is a constant, independent of
horizontal coordinate. In Fig. 2~a! we plot the components o
the dimensionless stress tensorS(1) versusX5x/ l for the
lowermost row of mobile particles,M51. The vertical com-
ponent is constant, and, due to the scaling used,V51. We
compare this result with two 30° piles with eitherL1520 or
97 and plot againS(1) vs X for both system sizes in Fig
2~b!. For the 60° pile the diagonal elements ofS are con-
stant, whereas for the 30° piles we observe a plateau in
center with decreasing stresses toward the left and right e
of the pile. Our simulation results are in agreement w
analogous simulations in Ref.@11#, i.e., we observe no shar
edges in the stresses, where the slopes change, as pre
by the theory in Ref.@11#.

From Fig. 2 we conclude that our soft particle model
able to reproduce the known analytical results of Re
@9,11#. V51 corresponds to the constant normal str
szz5mg/ l , and thus to the normal forcef z exerted on each
particle in rowM51. Heref z5d0szz5mg/L, with the mass
of the pilem5L(L11)m0/2, and the mass of one partic
m0. Our result f z5(L11)m0g/2 coincides with Ref.@11#
@see Eq.~42! therein#.

FIG. 2. Components of the dimensionless stress tensorS(1) at
rowM51 vs dimensionless horizontal coordinateX5x/ l , for a pile
with immobile particles at the bottom,M50. The slope of the pile
is 60° with L1520 in ~a!, and 30° withL1520 or 97 in ~b!. We
indicate the vertical stress withV5Szz, the horizontal stress with
H5Sxx , and the shear stress withQ5Sxz .
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2. Variation of system width for bumpy bottom

In this subsection we will examine the difference betwe
the theoretical predictions for the stresses and the nume
simulations, both in Ref.@11# for the 30° pile. The theory is
based on the assumption that the contact network is a
mond lattice. Thus we perform different simulations with
30° pile with L1519, and change the contact network b
increasing or decreasing the separation of the fixed parti
in row M50. The centers of the particles in the lowermo
row are separated by a distanced0(11c), with thec values
c5 1

15, 0, 2 1
750, and2 1

150. In Figs. 3~a! and 3~c! we plot the
vertical and horizontal components of the stress tensor,
in Figs. 3~b! and 3~d! we plot the contact network and th
principal axis of the stress tensor, respectively.

The interesting result is that the vertical stress in Fig. 3~a!
has a dip for negative-c values, the depth of which increase
with increasing magnitude ofc @11#. The horizontal stress in
Fig. 3~c! is much larger for negativec than for positivec.

From Fig. 3~b! we observe that the assumption of a pe
fect diamond lattice for the contacts is true only forc5 1

15.
The vertical stressV(1) has a zigzag structure that we rela
to the steps at the surface of a 30° pile. For the naively u
c50 and also for small negativec52 1

750 we have a contac
network with regions of coordination number 4 and 6, co
responding to the triangular or the diamond contact netwo
For squeezed bottom particles, i.e.,c52 1

150, the contact net-
work is again a diamond lattice, but the orientation is tilt
outwards from the center. From Fig. 3~d! we obtain arching
for negativec and no arching for positivec. Seemingly, a
tilted diamond lattice is neccessary for an arch to form in t
situation.

In Fig. 4~a!, for the simulations from Fig. 3 we present th
anglef(1) @see Eq.~10!#, about which the major principa
axis is rotated from the horizontal in the counterclockw
direction. Forc,0 we observe a constant angle in the ou
part @consistent with the fixed principal axis~FPA! theory in
Ref. @16##, and a transition region in the center. We obse
the FPA only for negativec, when we also find arching.

In contrast, forc>0 we observe a slow continuous vari
tion of f(1) over the whole pile. In Fig. 4~b! we plot the
ratio of the principal axiss5Smin /Smax, and observe an al
most constant value in the outer region of the pile, wher
in the inner part the ratio is stronglyc dependent. From a
detailed comparison of the contact network and the str
tensor, we may correlate several facts: First, the ratio of
principal axiss seems to determine whether the contact n
work is a triangular or a diamond structure, the latter w
one open contact. Forc50 and2 1

750 we observe the trian-
gular contact network ifs is large. Second, the direction o
the diamonds is correlated tof, i.e., we observe the tilted
diamond lattice~for negativec) if the major axis is tilted far
enough from the horizontal.

3. Removing particles from the pile

Now we use the pile from Fig. 2~a!, i.e., 60° with
L1520, and examine the influence of one removed part
on the stress distribution. Here we remove the third, fif
and seventh particles denoted byR 5 3, 5, and 7, respec
tively, from the right in rowM57. We relax the pile and
plot the vertical normalized stress in rowM51, i.e., at the
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FIG. 3. ~a! Vertical stressV(1), in rowM51, vsX for a 30° pile with a bumpy bottom, andL1519. The immobile particles in row
M50 are separated by a distanced0(11c), i.e., are squeezed together for negativec or separated for positivec. ~b! The contact networks
for the corresponding systems.~c! Horizontal stressH(1) vsX. ~d! The principal axis of the stress tensor for the corresponding syste
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bottom, in Fig. 5~a!. Evidently, the formerly constant stres
of the complete pile~solid line! is disturbed. We observe tha
the stress decreases in the region below the missing pa
atX 5 0.55, 0.65, and 0.75 forR 5 7, 5, and 3, respectively
Interestingly, the stress is minimal when following lines pa
allel to the slopes of the pile, toward rowM51, starting from

FIG. 4. ~a! The angle of the major principal axis of the stres
f(1), in rowM51 vsX, from the simulations in Fig. 3.~b! The
ratio s5Smin /Smax of minor to major principal axes vs.X from the
simulations in~a!.
cle

-

the vacancy. Note that following the slopes means here:
lowing a line in the diamond contact network. The lines
contact are here tilted by 60° from the horizontal and th
are parallel to the slopes. Going from the minimum val
outward we observe a sudden jump to the maximum valu
V(1). When a particle close to the center of the pile is
moved, i.e.,R 5 7, for L7514, the stress pattern is almo
symmetric to the centerX50.5, whereas the pattern becom
more and more asymmetric with decreasingR.

When a particle is removed, this particle can no long
transfer the stresses to its lower neighbors. Therefore
minimum stress is found when following the slopes start
from the missing particle. The stress which has not be
carried by the missing particle has thus to be transfer
along its right and left neighbors, what leads to the maxim
stresses just outwards from the minimum stresses. In ord
clarify this result we plot the vertical stressesV inside the
pile at different heightsM 5 1, 4, 7, 10, and 13 in Fig. 5~b!.
With increasingM , i.e., increasing height in the pile,V de-
creases, since the weight of the part of the pile aboveM
decreases. Inside the pile, the stress is minimal when foll
ing the slopes downward, starting from the missing partic
Interestingly, we observe an asymmetric stress also
M.7. In Fig. 5~c! we plot the contact network for the cas
where particleR57 is removed from rowM57. We ob-
serve an increase of the number of contacts only for
neighbors of the vacancy. From the principal axis of stre
in Fig. 5~d! we observe an archlike structure, i.e., the str
below the vacancy is comparatively small. Furthermore,
direction of the major principal axis is almost vertical belo
the vacancy, and tilted outwards for the particles which ca
larger stresses.

,
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FIG. 5. ~a! Vertical stressV(1) in rowM51 vsX for a 60° pile with a bumpy bottom andL1520 ~solid line!. V(1) is given for piles
where particleR 5 7, 5, or 3, is removed from row 7; hereR counts from the right.~b! The vertical stressV(M ) is plotted for different rows
M 5 1, 4, 7, 10, and 13 for the pile where particle 3 is removed from row 7. Note the missing symbol forM57 ~circles!. ~c! Contact
network for the situation where particleR57 is removed from rowM57. ~d! Principal axis of stress for the situation where partic
R57 is removed from rowM57.
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We learn by removing one particle from the pile, th
stress decreases below the vacancy; however, the minim
of stress is observed when following the internal structure
the pile downwards, i.e., lines tilted by 60° from the horizo
tal. Much larger stresses are observed outwards from
minima in stress, i.e., an archlike structure is already fou
for one missing particle.

Note that this simulation is not in contradiction to th
discussion, concerning point source terms, in Ref.@16#. Witt-
mer, Cates, and Claudin discuss the effect an infinitesim
small mass element has on the stress distribution and
clude that the~small! weight is propagated along ‘‘rays’
mainly into the direction of gravity. In our case the ma
removed is quite large and thus the contact network is
formed what leads to the different effects described abov

B. Pile with smooth and flat bottom

In contrast to the piles with bumpy bottom, correspond
to the limit of very large friction, we model now a pile on
smooth and flat bottom, i.e., the limit of no friction. Note th
this situation is stable only if the outermost particles a
fixed.

1. Comparison of piles with different slopes

The next situation we describe is a pile on a flat, smo
bottom, i.e., the particles in rowM50 are allowed to move
Only the leftmost and rightmost particles are fixed horizo
t
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e
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tally by the corresponding wall. In Fig. 6~a! we show the
results for two 60° piles withL0520 and 40.

The vertical componentV of the stress is not constant an
the horizontal componentH is getting very large close to th
walls, since vertical stresses are transferred into the horiz
tal direction and propagate directly outward in rowM50. In
the case ofL0540 we observe a relative minimum of th
vertical stress in the center,X50.5. In Fig. 6~b! we compare
the result of Fig. 2~b!, i.e., L1597, to situations on smooth
and flat bottom withL0522 and 100. We observe fluctua
tions at the shoulders of the pile and again a dip in the ce
of the pile,X50.5. In order to find an explanation for thi
behavior we plot the contact networks in Figs. 6~c! and 6~d!
for the large 30° piles with bumpy,L1597 @Fig. 6~c!#, and
smooth, flat bottom,L05100 @Fig. 6~d!#. The dashed lines
give the vertical stress for the corresponding pile. In Fig. 6~c!
we observe a contact network similar to the result in F
3~b! for c50. The center triangle is arranged on a diamo
lattice and the shoulders are arranged on a dense triang
lattice, i.e., the horizontal contacts are closed. Only close
the surface we have a few particles on a tilted diamond
tice. In Fig. 6~d! the situation is more complicated. We ob
serve three regions with different structures: first, a diamo
lattice in the center; second, a dense triangular lattice in o
ward direction; and third, the diamond lattice tilted outwar
at the ends of the pile. In summary, we correlate the va
tions of normal stressV to the change of structure in th
contact network.
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FIG. 6. Components of the dimensionless stress tensorS(0) vs dimensionless horizontal coordinateX5x/ l at rowM50, for a pile with
mobile particles at the smooth and flat bottom. We indicate the vertical stress withV5Szz, the horizontal stress withH5Sxx , and the shear
stress withQ5Sxz . ~a! The slope of the pile is 60°, andL0520 or L0540. ~b! The results for 30° andL05100 ~solid line! or L0522
~symbols! are compared to the result forL1597 from Fig. 2~b!. ~c! Contact network for the left half of a 30° pile withL1597 and a bumpy
bottom.~d! Contact network for the right half of a 30° pile withL05100 and a smooth, flat bottom. The dashed line in~c! and~d! gives the
vertical stressV for the corresponding piles.
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2. Variation of system width for smooth, flat bottom

Now we vary the width of the system with a flat, smoo
bottom. Here we do not vary the box width, we just increa
~or decrease! the diametersd15dL5(11c)d0 of the left-
most and rightmost particles in rowM50. All other par-
ticles have a fixed diameterd0, so that we change the effec
tive width of the system. In Fig. 7 we plot the vertic
stressesV(0),V(2), andV(4) for 30° piles withL0522.
We find that the dip already vanishes for slightly increas
c, and relate the existence of the dip to the presence of o
horizontal bonds in the center of the pile atX50.5. For
decreasingc we still observe a dip structure in the pile, bu
whenc becomes too small, the stress in the array of partic
may become asymmetric, since the pefect triangular ara
ment is disturbed~seec52 2

15!.

C. Polydisperse particles

Starting from a monodisperse 30° pile with bumpy botto
andL1 5 97 @see Fig. 2~b!#, we change the particle size o
each particle slowly to the diameterdi5d0(11r i), where
r i is a random number homogeneously distributed in the
terval@2r /2,r /2#. We present the vertical stress in Fig. 8, f
simulations withr5 2

3000 @Fig. 8~a!#, 2
300 @Fig. 8~b!#, and 1

30

@Fig. 8~c!#. We plot the result of one run~solid line! and
compare it with the monodisperse case~dashed line! and the
average over 40 runs@Fig. 8~a!# or 100 runs@Fig. 8~b! and
e

g
en

s
e-

- FIG. 7. Vertical stressesV(0), V(2), V(4), in rowsM50, 2,
and 4, respectively~from top to bottom! vs X for a 30° pile with a
smooth, flat bottom andL522. The two outermost particles ar
fixed by vertical walls and have diameterd5(11c)d0. The insets
give the relative changec. ~a! Large boundary particlesc.1. ~b!
Small boundary particlesc,1.
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8~c!# ~symbols!. The fluctuations in stress increase with i
creasingr . In fact we observe fluctuations much larger th
the total stress for the monodisperse pile. With increasinr
the shape of the averaged vertical stress changes in the c
from a hump@seer5 2

3000#, to a dip@seer5 1
30#. The averaged

stress in Fig. 8~c! is similar to the stress obtained~after many
averages! from a cellular automaton model for the stre
propagation in the presence of randomly opened cont
@17#.

In Fig. 9~a! we give the contact network of one run a
presented in Fig. 8~c!. The line thickness indicates the ma
nitude of forces active at a contact. In Fig. 9~b! we present a
part of this contact network, and in Fig. 9~c! we plot the
principal axis of the stress tensor for the same part. In F
9~a! and 9~b! each line represents the normal direction of o
contact and each particle center is thus situated at the m
ing point of several lines. Note that some particl
inside the pile have no contacts to their above neighbors,
they are situated below an arch. Comparing the contact

FIG. 8. Vertical stressV(1), in rowM51, vsX for a 30° pile
with a bumpy bottom, andL1597. The particle diameter is homo
geneously distributed in the interval@d0(12r /2),d0(11r /2)#. The
values ofr are r52/3000~a!, r52/300 ~b!, and r51/30 ~c!. The
dashed line gives the result of Fig. 2~b! with r50 andL1597. The
solid line gives the result of one run, and the symbols correspon
an average over 40 runs for~a! or 100 runs and three particles fo
~b! and ~c!.
ter

ts

s.
e
et-

.,
t-

work @Fig. 9~b!# with the stresses@Fig. 9~c!#, one may again
relate the structure of the contcat network to the anglef and
the ratio of the principal axis, as discussed above in S
IVA2.

Finally, we calculate the probability distributionP for
vertical stressesV. We average only over the lowermost ro
M51, and also neglect the outermost particles of this ro
In detail we average all particles 10< i<87 ~counting from
the lower left end to the right! over 100 runs. Since the stres
in rowM51 is a function ofX in the case ofr50, we scale
the stresses forr.0 by the stresses found forr50, i.e. we
use the scaled stress

T5V~r.0!/V~r50!2min@T#, ~12!

with the minimum of allT, obtained from particles which ar
shielded and thus feel only their own weight; see Fig. 9. N
that this occurs frequently, even inside the pile. We chec
that the probability distribution ofT does not depend on th
specific choice of the interval, i.e., we also averaged ove
smaller interval 33< i<67, or over particles in rowM52
with 130< i<164, and we found no difference besides flu
tuations. We plot the distribution functionP(T) in Fig. 10.
The dashed line in Fig. 10~a! shows a power law for smal
stressesT, while the dotted line in Fig. 10~b! shows an ex-
ponential decay for largeT.

Thus our results are in agreement with the theoretical p
dictions of Ref.@5#, and the numerical findings of Ref.@6#, at
least for largeT; see Fig. 10~b!. Note that the probabilty to
find largeT is greater forr5 1

30 than for r5 2
300, correspond-

ing to stronger fluctuations. For smallT we find a power law
with exponent2 1

2 for both values ofr ; see Fig. 10~a!.

V. DISCUSSION AND CONCLUSION

We present simulations of static 2D piles made of alm
monodisperse spheres. With this simplified model we rep
duce different former theoretical predictions which we
based on the assumption of a homogeneous contact net
in the whole pile and perfectly rigid particles.

One fact is that arching and the so called dip in the v
tical stress at the bottom are not neccessarily due to s
friction @11,14#. If the contact network varies as a function
the position in the pile, we observe stresses different fr
the theoretical predictions based on a regular network. If
observe arching, the orientation of the stress tensor is fix
at least in the outer part, and the contact network is symm
ric to the center but not translation invariant. The orientat
of the major principal axis and the ratio of the two eigenv
ues of the stress tensor are correlated with the structure o
contact network. We observe diamond lattices, either vert
or tilted by 60° outward from the center, if the major prin
cipal stress is almost vertical or tilted outwards, respective
But, if the major and minor principal axes are comparable
magnitude, we observe a triangular lattice, i.e., all poss
contacts closed, rather than a diamond lattice. Together
the tilted contact network, i.e., a strongly tilted princip
axis, we show in some cases arching and a small vert
stress under the center of the pile. If the contact networ
tilted outwards, stresses are preferentially propagated

to



4728 55S. LUDING
FIG. 9. ~a! Contact network of one pile from Fig. 8~c!. The line thickness indicates the magnitude of the contact force.~b! Part of the
contact network from~a!. ~c! Principal axis of stress from the same simulation as in~b!.
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wards, which may be regarded as a reason for arching
for the dip.

Varying the size of the particles randomly, we find th
already tiny polydispersities destroy the regular contact n
work. Due to small fluctuations in the particle size, the p

FIG. 10. ~a! Double logarithmic plot of the probability distribu
tion of small vertical stressesT in rowM51. We skip ten particles
at the right and the left and average over 100 runs; see Eq.~12!. ~b!
Log-linear plot of the probability distribution for large stresses fro
the same data as in~a!.
nd

t
t-
-

ticles are still positioned on a triangular lattice even when
contacts are randomly open. In the case of a random netw
we also find the so called stress chains, i.e., selected pat
large stresses, and the stress fluctuations are larger or o
order of the mean stress. The stress chains — or, better
stress network — is also disordered. When averaging o
many realizations of the stress network we obtain a dip in
vertical stress at the bottom if the size fluctuations are la
enough. Thus we observe a stress distribution at the bot
similar to that obtained by a cellular automaton model ba
on a random opening of contact@17#.

Since we are already able to find most of the phenome
ogy expected in a sandpile in an oversimplified regu
model system, without friction, we conclude that the role
the contact network~or the fabric! is eminent. Thus, we sug
gest to work out a formalism that accounts for the fab
within the simple framework, before including the mo
subtle phenomena into the theory. However, friction a
small polydispersity may play a different role in more ge
eral situations with physical sandpiles.

As an extension of our model, we started more realis
simulations with a nonlinear Hertz contact law@21#, and also
with solid friction and nonspherical particles@27#. The effect
of those more realistic interaction laws has to be elabora
and three-dimensional examinations should also be
formed.
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